

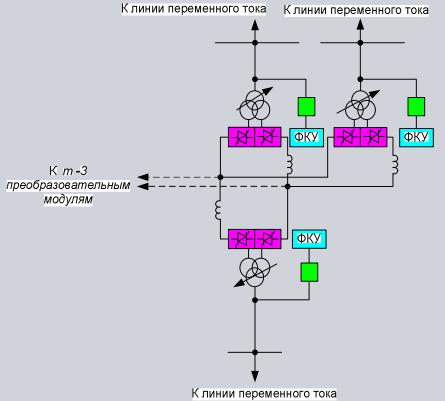
Научно-исследовательский институт по передаче электроэнергии постоянным током высокого напряжения

Секция «Умные сети будущего»

Тема проекта:

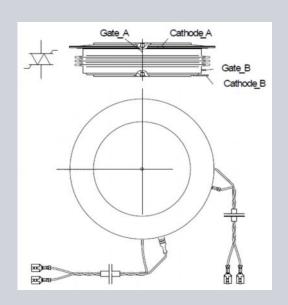
«Многомодульные вставки постоянного тока (МВПТ) для ограничения токов короткого замыкания и повышения управляемости в энергосистемах мегаполисов»

Н.Г. Лозинова - Зав. Отделом управляемых передач и противоаварийной автоматики, Ю. В. Капитула научный сотрудник, аспирант по теме


МВПТ - устройство для ограничения токов короткого замыкания в условиях мегаполиса и повышения управляемости энергосистемы

Преобразовательный модуль - комплекс реверсивных преобразовательных устройств между шинами переменного и постоянного тока, состоящий из трансформатора, преобразователя, фильтро-компенсирующих устройств и сглаживающего реактора.

При подключении т преобразовательных модулей параллельно через шины постоянного тока создают т разрывов для протекания токов короткого замыкания.



Одна из задач МВПТ – реверсивное распределение потоков энергии между преобразовательными модулями

Решается с использованием шестифазного моста со встречно – параллельными тиристорами в высоковольтном вентиле

Возможны решения с двумя обычными тиристорами

₽

Есть решение НТЦ Энергетики

Симметричные тиристоры

- •Два встречно-параллельных тиристора, выполненных на одной пластине;
- •Малая площадь прибора;
- •Использование более компактных снабберов и схем управления;
- •Упрощение силовой схемы и ее удешевление.

Основное преимущество использования СИМИСТОРОВ – осуществление способа реверса мощности путем изменения направления тока в контуре постоянного тока отличие от известного способа реверса полярности путем изменения преобразователей применением или коммутационных аппаратов.

Система регулирования МВПТ

Система регулирования состоит из двух самостоятельных, взаимодействующих между собой частей:

Система автоматического режимного (медленного) регулирования осуществляет управление режимом работы МВПТ в составе энергосистем в соответствии с заданными условиями ведения режима.

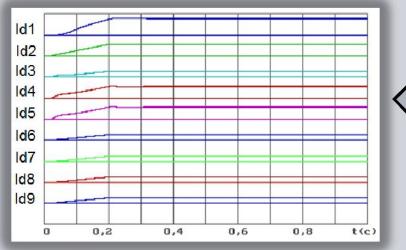
Быстродействующая система регулирования и защиты предназначается для управления выпрямленным током преобразователей, выявления и ликвидации аварий, выполнения коммутационных операций с элементами схемы объекта по командам оператора и сигналам защит.

В 2005 году внедрена цифровая система регулирования на ПС Выборгская

Особенности работы МВПТ в мегаполисе:

- принудительное распределение потоков энергии между преобразовательными модулями (необходимость и возможность реверса);
- быстродействующее управление потоками активной мощности системой режимного управления и регулирования;
- экономия числа преобразовательных модулей на одну управляемую связь (при m>3);
- создание разрыва для протекания токов короткого замыкания;
- создание разрывов для протекания потоков реактивной мощности.

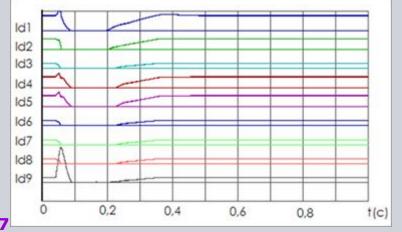
Что нужно для реализации проекта МВПТ


Стадии работы	Содержание	Срок, мес.	Участники
Выполнение НИОКР	Разработка системных требований к МВПТ с учетом структуры сети переменного тока	4	ниппт
	Разработка технического задания для изготовления системы регулирования	6	ниппт
	Разработка технических требований к силовому и преобразовательному оборудованию, эскизная проработка компоновки ПС	4	ниппт
	Изготовление опытно-промышленных образцов ПТК систем регулирования	12	НИППТ, ФГУП ВЭИ
Подготовка к строительству, выбор и изготовление оборудования	Рабочее проектирование, изготовление нестандартного силового оборудования	7	НИИПТ - научное сопровождение, изготовление: «Электрозавод» ФГУП ВЭИ, НТЦ Энергетики, Проектирование: ОДП
Сдача объекта под ключ	Строительство	6	Строительно-монтажная организация (СМО)
	Научно-техническое сопровождение ввода в эксплуатацию	-	ниппт
	Наладка оборудования на ПС	4	СМО, НИИПТ,
	Приемо-сдаточные испытания	4	«Электрозавод»,
	Гарантийное сопровождение объекта после его ввода в эксплуатацию	24	ФГУП ВЭИ, НТЦ Энергетики, ОДП

Срок реализации проекта – 2÷2,5 года

Иллюстрация работы 9-тимодульной схемы при

моделировании трехфазного замыкания на шинах переменного 🗸


тока одного из модулей для ПС Бутырки

Включение 9-тимодульной МВПТ (нормальный режим)

Опрокидывание инвертора (модуль 9), вблизи которого возникло к.з. – аварийный режим.

(без участия противоаварийных мероприятий)

Id1
Id2
Id3
Id4
Id5
Id6
Id7
Id8
Id9

0 0,2 0,4 0,6 0,8 t(c)

Работа быстродействующего регулирования при возникновении аварийного режима

Новые технические решения в рамках проекта МВПТ

Физическая особенность ВПТ -

опрокидывание инвертора при «близких» к.з. в сети переменного тока

Решение этой проблемы для МВПТ облегчается, поскольку все модули территориально расположены на одной площадке и обмен информацией между ними легко осуществляется.

НИИПТ'ом разработаны алгоритмы выхода из подобных аварийных режимов

НИИПТ предлагает разработать устройства из сверхпроводников для повышения надежности работы оборудования постоянного и переменного тока:

Сверхпроводящие токоограничивающие резисторы в цепи инвертора

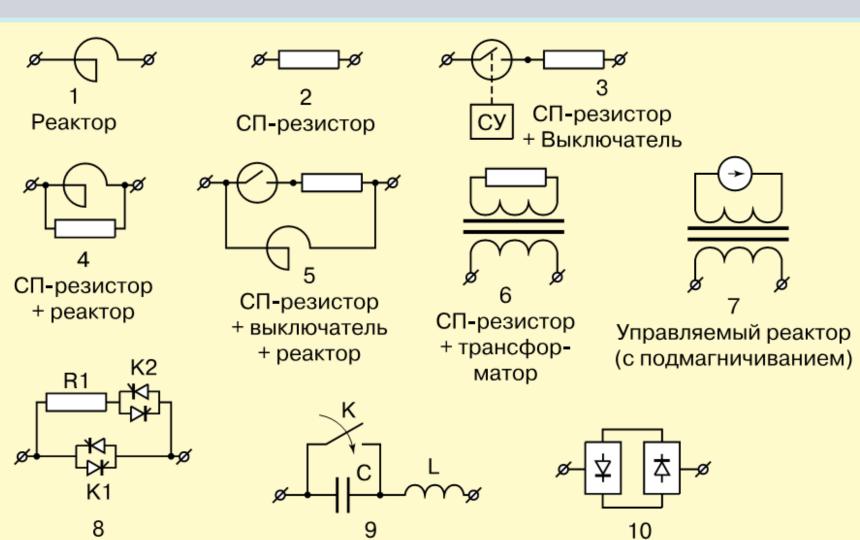
Осуществление параметрической защиты инверторов

Повышение надежности электроснабжения потребителей

Перспективы применения МВПТ НИИЛГТ

В энергосистемах мегаполисов получаем комплексное решение:

- ограничение ТКЗ;
- управление нормальными режимами;
- решение задач противоаварийного управления (в Токио после аварии 1987 года на ВПТ, расположенную в черте города, возложена функция противоаварийной защиты от лавины напряжения);
- в настоящее время возникла необходимость ограничения ТКЗ в энергосистемах Москвы, Санкт-Петербурга, Нижнего Новгорода, Екатеринбурга (на примере г.Москвы место установки п/с Бутырки, которая находится в списке реконструируемых объектов и на ней намечено увеличение до 17 числа отходящих линий и она расположена в электрической близости от 14 станций);
- при реализации проекта передачи постоянного тока ЛАЭС2-Выборг, совмещенного с реконструкцией ПС Выборгская, будут использоваться алгоритмы системы регулирования, разработанные для МВПТ.


Слайды к вопросам по теме проекта

«Многомодульные вставки постоянного тока (МВПТ) для ограничения токов короткого замыкания и повышения управляемости в энергосистемах мегаполисов»

Токоограничивающие устройства

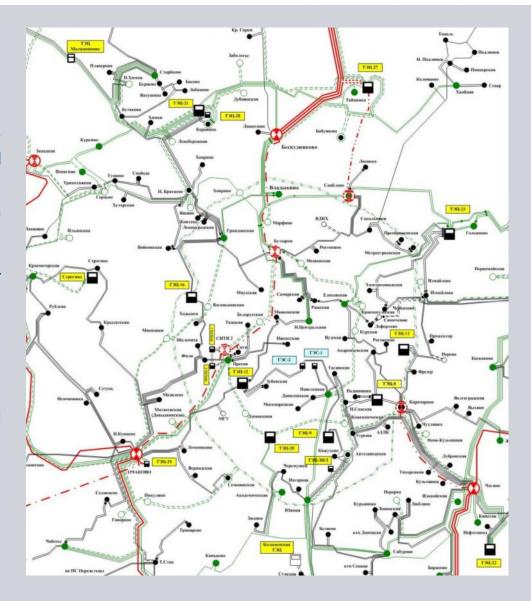
TO c LC контуром

ТО-выключатель

ВПТ

Проблема ограничения токов короткого замыкания

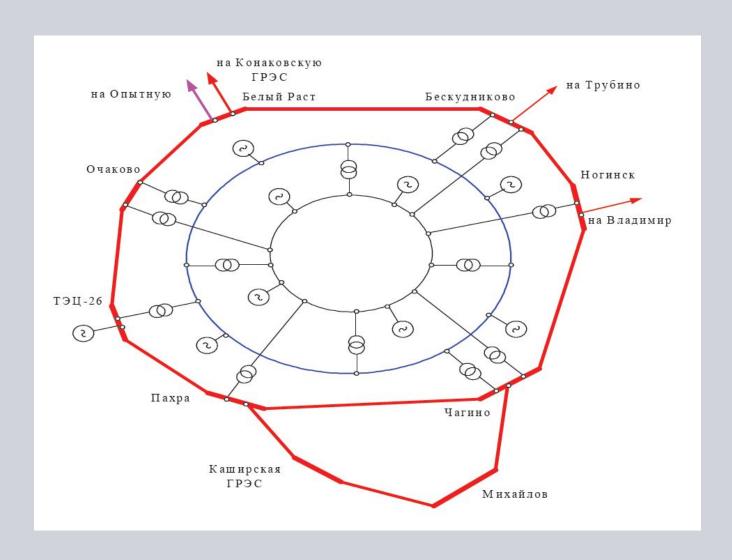
Методы ограничения	Недостатки	
Секционирование сети путем разделения	Вынужденное мероприятие, снижающее надежность электроснабжения. Москва: 19 точек в сети 220кВ, 91 в сети 110 кВ	
Использование токоограничивающих устройств, ограничивающих ткз за счет дополнительных сопротивлений	Неэффективно в Москве из-за параллельных коротких линий	
Создание глубоких вводов постоянного тока. Секционирование сети с помощью технологии HVDC Light	дополнительные потери электроэнергии;достаточно высокая стоимость	



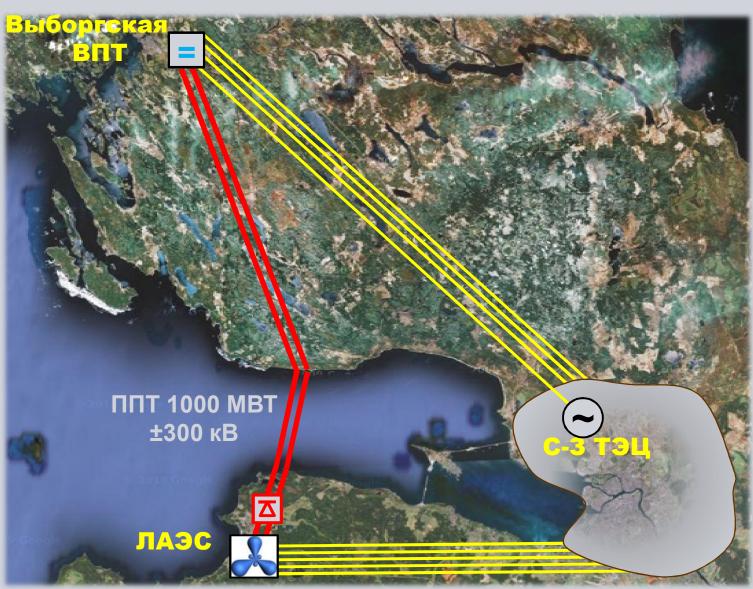
Графическая карта-схема сетей 110 кВ и выше г. Москвы на перспективу до 2020 года

Особенности энергосистемы:

-внутри кольца 500 кВ на сравнительно малой площади 30*30 км расположены станции общей мощностью порядка 10 ГВт, на уровне развития энергосистемы 2013 года - мощность этих станций увеличится до 13 ГВт;


- линии 110 и 220 кВ, связывающие эти станции и питающие расположенные в электрической близости ПС, имеют длины от 1,5 до 12 км.

Структура Московской энергосистемы



Карта района электропередачи ЛАЭС - Выборг

