Акционерное общество «Научно-технический центр Единой энергетической системы» АО «НТЦ ЕЭС»

AproxIt

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Санкт-Петербург 2017

		2
введение		3
1. ОБЩЕЕ ОГ	ИСАНИЕ ПРОГРАММЫ	3
1.1.	Основные расчетные выражения	3
1.2.	Входные данные	4
1.3.	Выходные данные	4
2. РАБОТА С	ПРОГРАММОЙ	6
2.1.	Формирование задания на расчет	6
2.2.	Вывод считанных из CSV данных	9
2.3.	Вывод расчетных значений1	0
2.4.	Вывод расчетных кривых1	1
2.5.	Вывод информации о расчетах1	2
2.6.	Вывод финальной выборки1	3

введение

В Руководстве пользователя приведено краткое описание работы программы *AproxIt*.

1. ОБЩЕЕ ОПИСАНИЕ ПРОГРАММЫ

1.1. Основные расчетные выражения

Итоговая передаточная функция рассчитывается в виде следующего полинома:

$$W(p) = \frac{\sum_{i=0}^{l} (p^{i} \cdot GG_{i})}{1 + \sum_{i=0}^{k} (p^{i} \cdot GG_{i+l})}$$
(1)

где *p* – оператор Лапласа;

GG – совмещенный вектор коэффициентов полиномов числителя и знаменателя;

l – степень полинома числителя;

k – степень полинома знаменателя;

Расчет коэффициентов полиномов числителя и знаменателя выполняется по следующим выражениям (реализованы оба типа выражений VAR_1 , VAR_2 – пользователь может выбрать либо один из двух вариантов, либо сразу оба):

$$ACH_{ii} = AMP_{ii} \cdot e^{j \cdot FAZA_{ii}}$$

$$\omega_{ii} = 2\pi \cdot f_{ii}$$

$$ii \in [0; k+l]$$
 $jj \in [0; k+l]$

$$A_{ii,jj}^{VAR_{1}} = \begin{bmatrix} -Re\left(\left(j \cdot \omega_{ii \cdot pp}\right)^{jj-l} \cdot Re\left(ACH_{ii \cdot pp}\right) + \left(j \cdot \omega_{ii \cdot pp}\right)^{jj-l} \cdot j \cdot Im\left(ACH_{ii \cdot p}\right)\right) & \text{при}\left(jj > l \text{ и } ii \le l\right) \\ Re\left(\left(j \cdot \omega_{ii \cdot pp}\right)^{jj}\right) & \text{при}\left(jj \le l \text{ и } ii \le l\right) \\ -Im\left(\left(j \cdot \omega_{ii \cdot pp}\right)^{jj-l} \cdot Re\left(ACH_{ii \cdot pp + oo}\right) + \left(j \cdot \omega_{ii \cdot pp + oo}\right)^{jj-l} \cdot j \cdot Im\left(ACH_{ii \cdot p}\right)\right) & \text{при}\left(jj > l \text{ и } ii > l\right) \\ Im\left(\left(j \cdot \omega_{ii \cdot pp + oo}\right)^{jj}\right) & \text{при}\left(jj \le l \text{ и } ii > l\right) \\ \end{bmatrix}$$
(2)

$$OO_{ii}^{VAR_{1}} = \begin{bmatrix} Re(Re(ACH_{ii\cdot pp}) + j \cdot Im(ACH_{ii\cdot pp})) & \text{при } ii \le l \\ Im(Re(ACH_{ii\cdot pp+oo}) + j \cdot Im(ACH_{ii\cdot pp+oo})) & \text{при } ii > l \\ GG^{VAR_{1}} = OO^{VAR_{1}}/AA^{VAR_{1}} \end{bmatrix}$$

$$A^{VAR_2} = \begin{bmatrix} -Im\left(\left(j \cdot \omega_{ii \cdot pp}\right)^{jj-l} \cdot Re\left(ACH_{ii \cdot pp}\right) + \left(j \cdot \omega_{ii \cdot pp}\right)^{jj-l} \cdot j \cdot Im\left(ACH_{ii \cdot p}\right)\right) & \text{при}\left(jj > l \text{ и } ii \leq l\right) \\ Im\left(\left(j \cdot \omega_{ii \cdot pp}\right)^{jj}\right) & \text{при}\left(jj \leq l \text{ и } ii \leq l\right) \end{bmatrix}$$

$$= \begin{bmatrix} -Re\left(\left(j \cdot \omega_{ii \cdot pp}\right)^{jj-l} \cdot Re\left(ACH_{ii \cdot pp+oo}\right) + \left(j \cdot \omega_{ii \cdot pp+oo}\right)^{jj-l} \cdot j \cdot Im\left(ACH_{ii \cdot p}\right)\right) & \text{при } (jj > l \text{ и } ii > l) \\ Re\left(\left(j \cdot \omega_{ii \cdot pp+oo}\right)^{jj}\right) & \text{при } (jj \le l \text{ и } ii > l) \end{bmatrix}$$

$$(3)$$

$$OO_{ii}^{VAR_2} = \begin{bmatrix} Im \left(Re(ACH_{ii \cdot pp}) + j \cdot Im(ACH_{ii \cdot pp}) \right) & \text{при } ii \le l \\ Re \left(Re \left(ACH_{ii \cdot pp + oo} \right) + j \cdot Im(ACH_{ii \cdot pp + oo}) \right) & \text{при } ii > l \end{bmatrix}$$

 $GG^{VAR_2} = OO^{VAR_1} / AA^{VAR_2}$

где AMP – вектор, содержащий значения амплитуд частотного спектра рассматриваемого процесса или частотных характеристик рассматриваемой неизвестной передаточной функции (в том числе – режимной частотной характеристики) для значений частоты (Гц) f;

FAZA – аналогично, вектор значений фазы (рад.);

j – мнимая единица.

оо – параметр, определяющий выбор точек для расчета (при задании значений параметра *оо* должны выполняться следующие условия $(l + k) \cdot pp + oo < rows(AMP), (l + 1) \cdot pp + oo ≥ 0);$

pp – параметр, характеризующий используемое прореживание входных векторов.

При выполнении расчетов в качестве варьируемых можно задавать следующие параметры:

- максимальную степень полинома числителя;
- максимальную степень полинома знаменателя;
- параметр прореживания исходных данных;
- параметр, определяющий выбор точек для расчета.

1.2. Входные данные

Для импорта входной таблицы частотной характеристики должен использоваться формат файлов *CSV*, в котором отдельными столбцами заданы следующие параметры частотной характеристики (отклика):

- частота разложения (в Гц или рад/с);
- пара столбцов:
 - амплитуда частотной характеристики;
 - фаза частотной характеристики (в градусах или рад.);

либо:

• действительная часть комплексного отображения частотной характеристики;

• мнимая часть комплексного отображения частотной характеристики.

Разделитель дробной части может быть либо точкой, либо запятой (пользователь задает используемый тип разделителя при импорте файла самостоятельно), разделителем столбцов может быть один из следующих символов «; , <пробел> .».

1.3. Выходные данные

Результат работы программы – коэффициенты полиномов *GG* (выражения (2), (3)). Экспорт результатов расчета осуществляется на вкладке «Переменные», параметр «Коэффициенты полинома» кнопкой «Экспорт».

Коэффициенты полинома будут сохранены в текстовый файл «rows.txt» в папке с программой. Первые *L* членов – коэффициенты полинома числителя, остальные *К* параметров – коэффициенты полинома знаменателя.

2. РАБОТА С ПРОГРАММОЙ

2.1. Формирование задания на расчет

Внешний вид программы приведен на рисунке 1.

ug\data\проба-диракЗ (А и Ф Ч	X).csv	Рассчетные	е параметры	Частота задана			
 Разделитель десятичной части- Системный разделитель 	Параметр 1	Параметр 2	• в герцах				
 Разделитель «.» Разделитель «.» 		ff -	ff -	О в рад./сек. Фаза залана			
Разделитель столбцов		m:IF -	f:IF +	💿 в градусах			
Разделитель «;» Разделитель «(пробел)»		Тип параметра 1	Тип параметра 2	○ в радианах			
 ○ Разделитель «,» ○ Разделитель «.» 		 Амплитуда 	 ● Фаза				
Выбрать файл	>	⊖ Re()	○ lm()				
-Тип расчета ОА ← Re, Im: ОО ← Re, Im		Область пои	іска решения	Количество расчетов			
OA ← Im, Re OO ← Re, Im		13 ≤	<≤ 16	Достаточность решения			
🖲 оба варианта		13 ≤	L≤ 16	• минимум по критерию			
Опции расчета		10 ≤ PI	P1 ≤ 17	О в кажлой точке меньше числа ниж			
V		-270 \$ U	JU ≤ -240	О укажу самостоятельно (ниже в %)			
Критерии поиска решения				Достаточная точность в процентах			
ОПогрешность фазы							
 Погрешность фазы и амплиту 	ды						
				Количество заданий: 7936			
				Выполнено расчетов: 7936			
				Время расчета: 0.006714			
				Осталось времени: О Последняя погрешность: 0.7008			
				Подготовить рассчет			
				Рассчитать			
				Остановить рассчет			

Рисунок 1 – Внешний вид программы

Для определения аппроксимированной частотной характеристики необходимо:

- 1. Создать файл CSV;
- 2. Выбрать фал в программе кнопкой «Выбрать файл» (рисунок 9);

D:\Docs2D\docs_C\docs\job\RAD	Studic
Разделитель десятичной части	
Осистемный разделитель	
Разделитель «.»	
Разделитель «,»	
Разделитель столбцов	
• Разделитель «;»	
Разделитель «(пробел)»	
○Разделитель «,»	
○ Разделитель «.»	
Выбрать файл	>

		Расчетные	параметры	
		Параметр 1	Параметр 2	
÷	ff	частота -	ff v	
	m:	IF •	f:IF -	
	Ti	ип параметра 1-	Тип параметра 2	
	۲	Амплитуда	🖲 Фаза	
	0	Re()	◯ lm()	

Рисунок 2 – Поле выбора файла и его параметров

Рисунок 3 – Поле выбора записанных в файл параметров

- 3. Настроить параметры входного файла (разделители дробной части; разделители столбцов);
- 4. Нажатие кнопки > загружает данные из файла в память программы;
- 5. Выбрать в разделе «Расчетные параметры» столбцы файла CSV, соответствующие значениям частоты, амплитуды и фазы (либо вещественной и мнимой составляющих комплексного отображения частотной характеристики). Заголовки столбцов CSV будут выведены в выпадающих списках (рисунок 3);
- 6. Указать программе типы параметров («Тип параметров 1» и «Тип параметров 2») в файле *CSV*;
- 7. Указать программе, в каких единицах в файле заданы частота, фазы (при использовании пары столбцов «Амплитуда-фаза»; рисунок 9);

Рисунок 4 – Поле выбора единиц измерения для столбцов файла *CSV*

Рисунок 5 – Поле выбора типа расчета и критерия, по которому производится выбор результирующих характеристик

- 8. Выбрать тип расчета: либо по формуле (2), либо по формуле (3), либо по обоим формулам (рисунок 5, «Тип расчета»);
- 9. Выбрать критерий, по которому будет оцениваться степень соответствия заданной в файле *CSV* частотной характеристики результатам решения уравнений (2) и (3);

Реализованные критерии:

 $A_{error} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{|A_{pacyer} - A_{CSV}|}{A_{CSV}} \cdot 100\% \right)$ – погрешность амплитуды (4) где *i* – номер точки частотной характеристики (номер строки файла *CSV*); N – число строк в файле *CSV* (размерность векторов исходных данных); A_{pacyer} – амплитуда полученной при расчете передаточной функции; A_{CSV} – амплитуда, заданная в файле *CSV* (либо рассчитанная по значениям вещественной и мнимой составляющих комплексного отображения частотной характеристики).

$$F_{error} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{|F_{\text{pacчет}} - F_{CSV}|}{A_{CSV}} \cdot 100\% \right) - \mathbf{погрешность} \ \mathbf{\phi} aзы$$
(5)

где *i* – номер точки частотной характеристики (номер строки файла *CSV*); N – число строк в файле *CSV* (размерность векторов исходных данных); $F_{\text{расчет}}$ – фаза полученной при расчете передаточной функции; F_{CSV} – фаза, заданная в файле *CSV* (либо рассчитанная по значениям вещественной и мнимой составляющих комплексного отображения частотной характеристики).

$$AF_{error} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{|A_{pacyer} - A_{CSV}| + |A_{CSV} \cdot (F_{pacyer} - F_{CSV})|}{A_{CSV_{MAX}}} \cdot 100\% \right)$$
(6)

где i – номер точки частотной характеристики (номер строки файла *CSV*); N – число строк в файле *CSV* (размерность векторов исходных данных);

А_{расчет} – амплитуда полученной при расчете передаточной функции;

A_{CSV} – амплитуда, заданная в файле *CSV* (либо рассчитанная по значениям вещественной и мнимой составляющих комплексного отображения частотной характеристики).

*F*_{расчет} – фаза полученной при расчете передаточной функции;

 F_{CSV} — фаза, заданная в файле *CSV* (либо рассчитанная по значениям вещественной и мнимой составляющих комплексного отображения частотной характеристики).

*A*_{*CSV_MAX*} – максимальное значение амплитуды, заданной в файле *CSV*.

10.Внести область поиска решения – диапазон просматриваемых значений *k*, *l*, *pp*, *oo* (см. выражения (2), (3));

Количество расчетов

Лостаточность решения
достаточность решения
минимум по критерию
🔾 оценка критерия меньше 10%
🔾 в каждой точке меньше числа ниже
🔾 укажу самостоятельно (ниже в %)
Достаточная точность в процентах

Количество заданий: 3968 Выполнено расчетов: 981 Время расчета: 0.2813 Осталось времени: 840.2 Последняя погрешность:

Подготовить ра	ассчет
----------------	--------

Рассчитать

Остановить рассчет

Рисунок 6 – Поле выбора типа выборки

Рисунок 7 – Вывод информации о параметров расчетов, кнопки управления расчетами

11.Указать критерий, по которому будет осуществлена финальная выборка рассчитанных передаточных функций:

Примечание: задать параметры финальной выборки можно также после выполнения расчетов.

«Минимум по критерию» – выбирает передаточную функцию, погрешность расчета которой (амплитуды/фазы/фазы и амплитуды) является минимальной из всех рассмотренных значений параметров *k*, *l*, *pp*, *oo*;

«Оценка критерия меньше 10 %» – выбираются все передаточные функции, суммарная погрешность которых не превышает 10 %;

«В каждой точки меньше числа ниже» – выбираются все передаточные функции, погрешность которых для каждого заданного в файле *CSV* значения не превышает заданного пользователем значения;

«Укажу самостоятельно» – выбираются все передаточные функции, суммарная погрешность которых не превышает введенного пользователем значения.

- 12.Выполнить подготовку расчета нажатием кнопки «Подготовить расчет». При подготовке расчета в программе будет выделена память для произведения всех расчетов, подсчитано число предстоящих расчетов (рисунок 7);
- 13.Запустить процесс расчета нажатием кнопки «Рассчитать». Расчеты будут производиться в фоновом режиме. Информация о текущем расчете примерном времени окончания будет выведено в окне программы (рисунок 7)

2.2. Вывод считанных из CSV данных

В процессе выполнения расчетов в фоновом режиме посредством интерфейса программы доступен вывод информации о одном или нескольких уже произведенных расчетах и их результатах.

Результаты произведенных расчетов выводятся в виде таблиц и/или кривых. Доступна возможность сравнения результатов разных расчетов, сравнения результатов расчетов с исходными данными и т.д.

Форма для вывода импортированных из файла *CSV* значений приведена ниже:

паеное и	erro Terc	стовая та	ónsua N	фененные	300404	юсти Ре	зультаты	Bulloper	KONE-INCO	o pesynut	ata Hel	p			
Ŧ	m:0F	f.IF	m:1F	f:1F	m:U	fiU	m:U	f:U	m:P	f:P	m:P	f:P	m:w	f:w	ŀ
0.01631	0.00840	67.473	0.00840	67.473	0.01021	83.7185	0.01021	83.7186	0.00027	161.534	0.00027	161.534	1.48E-0	14.0387	
0.03262	0.01622	73.4424	0.01622	73.4424	0.02046	77.3465	0.02046	77.3465	0.00030	154.304	0.00030	154.304	3.085-0	-24.139	
0.04894	0.02435	73.0295	0.02435	73.0285	0.03071	70.8461	0.03071	70.9461	0.00035	161.287	0.00035	161.287	7.10E-0	-16.500	
0.06525	0.03268	70.6953	0.03268	70.6953	0.04096	64.1364	0.04096	64.1364	0.00044	179.741	0.00044	179.741	0.00013	-26.521	
0.08157	0.04113	67.3775	0.04113	67.3775	0.05110	57.1847	0.05110	57.1847	0.00075	195.536	0.00073	195.536	0.00020	-34.135	
.09788	0.04995	63.3966	0.04955	63.3966	0.06098	49.9487	0.06098	49.9487	0.00125	201.875	0.00125	201.875	0.00025	-40.595	
1.1142	0.05786	58.9105	0.05786	58.9105	0.07035	42.443	0.07035	42.443	0.00202	201.84	0.00202	201.84	0.00035	-40.444	
13051	0.06572	54.0333	0.06572	54.0333	0.07891	34.7026	0.07891	34.7026	0.00305	198.471	0,00305	198.471	0.00050	-55.963	
1.14682	0.07286	48.885	0.07286	48.885	0.08634	26.8125	0.08634	26.8125	0.00433	193.406	0.00435	193.406	0.00062	-63.804	
.16314	0.07908	43.6035	0.07906	43.6035	0.09235	18.8907	0.09235	18.8807	0.00584	187.374	0.00584	187.374	0.00075	-72.17	
.17945	0.08413	30.3407	0.08413	38,3407	0.09673	11.049	0.09673	11.049	0.00754	100.091	0.00754	100.091	0.00006	-79.977	
.19577	0.08792	33.2410	0.08792	33,2410	0.09947	3.44524	0.09947	3.44524	0.00935	174.271	0.00935	174.271	0.00096	-07.530	
.21206	0.09046	28.4279	0.09046	28.4275	0.10063	-3.8108	0.10063	-3.9106	0.01132	167.78	0.01132	167.78	0.00106	-95.061	
.2294	0.09194	23.9906	0.09194	23.9906	0.10044	-10.631	0.10044	-10.631	0.01325	161.536	0.01325	161.536	0.00117	-101.91	
.24471	0.09245	19.9835	0.09249	19.9835	0.09915	-16.977	0.09915	-16.977	0.01526	155.649	0.01526	155.649	0.00125	-109.29	
.26105	0.09232	16.4222	0.09232	16.4222	0.09706	-22.820	0.09706	-22.820	0.01726	150.16	0.01726	150.16	0.00135	-114.26	
.27734	0.09164	13.302	0.09164	13.302	0.09440	-28.185	0.09440	-28.185	0.01924	145.077	0.01924	145.077	0.00135	-119.74	
.29365	0.09060	10.5966	0.09060	10.5966	0.09135	-33.086	0.09135	-33.086/	0.02120	140.393	0.02120	140.395	0.00144	-124.79	
.30997	0.08934	8.27511	0.08934	8.27511	0.08815	-37.569	0.08819	-37.569	0.02316	136.072	0.02316	136.072	0.00148	-129.36	
.32626	0.08797	6.2972	0.08797	6.2972	0.08491	-41.670	0.08491	-41.670	0.02512	132.091	0.02512	132.091	0.00153	-133.62	
.3426	0.08655	4.62697	0.08655	4.62697	0.08163	-45.431	0.08163	-45.431	0.02711	128.402	0.02711	128.402	0.00157	-137.58	
.35891	0.08513	3.22794	0.08513	3.22794	0.07842	-48.891	0.07842	-48.891	0.02914	124.978	0.02914	124.978	0.00160	-141.13	
110															

Рисунок 8 – Таблица исходных данных из CSV

1001		- 🗆 ×
кстовая	ы табльца Перененные Завнонности Результаты Выборка конечного результата. Нер	
		-
292477	7607688	
980778	8297894	
915418	812994	
171357	7954063	
742062	2827198	
509891	1178557	
236091	1736647	
570348	090177	
060741	158261	
182654	4816962	
366666	6496036	
038249	9412292	
673909	9136952	
069650	0305636	
389069	9807065	
881559	957718	
947831	1971721	
245188	8239738	
842850	065813	
910101	11533053	
950264	4989821	
525941	1818048	

Рисунок 9 – Вывод параметров расчетов

В качестве выводных данных могут использоваться векторы:

• Частота – исходные значения, приведенные в файле *CSV*, в рад./с;

• *Re* – значения исходных данных файла *CSV* (либо расчетные, в случае если в качестве исходных данных использовались амплитуда и фаза);

• Іт – аналогично, мнимая часть;

• АЧХ – расчетные значения амплитудно-частотной характеристики (либо спектра) для передаточной функции расчета (в примере на рисунке – Расчета № 3906);

- ФЧХ аналогично для фазочастотной характеристики;
- Матрица вывод матрицы А выражение (2);
- Правая часть уравнений вывод вектора ОО выражение (2);
- Коэффициенты полинома значения вектора GG(3);

• АЧХ-исх – АЧХ исходных данных из файла *CSV* (либо рассчитанные по ним);

• ФЧХ-исх – аналогично, ФЧХ.

2.4. Вывод расчетных кривых

Зависимости могут быть построены на вкладке «Зависимости».

Рисунок 10 – Вкладка зависимости

Могут быть выведены следующие параметры для двух любых расчетов:

• частота;

- Re (для расчетной частотной характеристики);
- Im (для расчетной частотной характеристики);
- AЧХ;
- ФЧХ;
- АЧХ-исх;
- Погрешность А погрешность амплитуды в каждой точке;
- Погрешность F погрешность фазы в каждой точке;
- Погрешность AF погрешность фазы и амплитуды.

Кнопка «Выборка» выбирает результаты расчетов, выбранные программой по заданному пользователем критерию.

Кнопка «Набор» – позволяет быстро переключаться между предустановленными наборами кривых для сравнения.

2.5. Вывод информации о расчетах

При выполнении каждого расчета формируются следующие параметры:

- Номер расчета;
- Величина суммарной погрешности по амплитуде;
- Величина суммарной погрешности по фазе;
- Величина суммарной погрешности по фазе и амплитуде;
- Значение К;
- Значение L;
- Значение PP1;
- Значение ОО;

• Максимальное значение погрешности по амплитуде для всех частот;

• Максимальное значение погрешности по фазе для всех частот;

• Максимальное значение погрешности по фазе и амплитуде для всех частот;

AproxIt v0.1 : 0	001	_					- 0	×
Главное меню Те	кстовая таблица	Переменные Зави	асимости Результа	аты Выборка коне	чного результата	Help		
Номер расчета	Погрешность А	Погрешность F	Погрешность АР	К	L	PP1	00	E
Расчет 464	10.47	15.98	0.1788	13	14	16	-240	
Расчет 482	15.71	24.74	0.3174	13	14	17	-253	
Расчет 491	0.153	43.13	0.0004876	13	14	17	-244	
Расчет 492	0.003005	23.17	7.392E-0005	13	14	17	-243	
Расчет 493	0.1817	6.294	0.00144	13	14	17	-242	
Расчет 494	0.01364	1.734	0.001254	13	14	17	-241	
Расчет 495	0.04499	9.986	0.000704	13	14	17	-240	
Расчет 706	2.25	0.7332	0.006142	13	15	16	-246	
Расчет 713	14.35	20.15	0.2237	13	15	17	-270	
Расчет 714	2.244	46.49	0.0009307	13	15	17	-269	
Расчет 722	13.81	46.83	0.04923	13	15	17	-261	
Расчет 723	0.7894	26.34	0.005192	13	15	17	-260	
Расчет 724	0.09464	8.017	0.002944	13	15	17	-259	
Расчет 725	3.809	4.161	0.02424	13	15	17	-258	
Расчет 726	1.83	6.679	0.01239	13	15	17	-257	
Расчет 730	0.03521	18.92	0.005117	13	15	17	-253	
Расчет 731	7.174	32.82	0.02731	13	15	17	-252	
Расчет 735	48.74	2.41	0.1545	13	15	17	-248	
Расчет 739	44.77	2.479	0.181	13	15	17	-244	
Расчет 743	45.75	16.55	0.2774	13	15	17	-240	
Расчет 928	24.28	10.01	0.0411	13	16	15	-241	-
•							Þ	i
			Pa	nel2			Сохрани	1ть
<i>د</i> ا							Выполн	ить

Рисунок 11 – Вкладка «Результаты»

2.6. Вывод финальной выборки

Таблица содержит расчеты, выбранные по заданному пользователем критерию.