Акционерное общество «Научно-технический центр Единой энергетической системы» АО «НТЦ ЕЭС»

Программный комплекс автоматизации расчетов переходных электромеханических процессов в ПВК «Eurostag»

Control Transient Stability

CTS

Руководство пользователя

Санкт-Петербург, 2019

Введ	цение		3
1.	Пользо	овательский интерфейс	4
1.:	1. Ha	ачало работы	4
1.2	2. Гл	авное меню	5
	1.2.1.	Файл	5
	1.2.2.	Загрузка	6
	1.2.3.	Расчеты	15
	1.2.4.	График	18
	1.2.5.	Настройка	21
1.3	3. Pa	бота с модулем «Схема»	22
1.4	4. Ко	онтекстное меню модуля «Схема»	25
	1.4.1.	Параметры элемента	26
	1.4.2.	Разорвать связи	28
	1.4.3.	Удалить	28
1.	5. Pa	бота с модулем «Расчет»	29
2.	Расчет		32
2.	1. Пс	ррядок расчета	32

Введение

В настоящее время расчеты динамической устойчивости производятся для широкого круга задач, таких как: ввод, модернизация нового генерирующего оборудования станции, расчеты уставок срабатывания релейной защиты и автоматики. Для подтверждения тех или иных выводов о необходимости и достаточности предлагаемых мероприятий необходимо произвести большое число расчетов. Для этих целей используется программно-вычислительный комплекс Eurostag (ПВК Eurostag). Однако в отличии от ПК RastrWin, обладающим широкими возможностями по автоматизации вычислений с помощью, встроенной макростудии и расчетного ядра в виде СОМ оболочки, ПВК Eurostag не обладает широкими возможностями по его автоматизации. В этой связи особое значение приобретает задача разработки процедур, позволяющих автоматизировать расчеты динамической устойчивости с помощью ПВК Eurostag.

Необходимо проанализировать последовательность действий необходимых для выполнения расчетов динамической устойчивости генераторов при разработке СВМ: во-первых все расчеты режимов, статической устойчивости проводятся с использованием ПК RastrWin, поэтому для начала расчетов динамической устойчивости необходимо преобразовать данные из данного ПК в формат ПВК Eurostag. Функциональность программы должна быть включать возможность прямого преобразования файлов из формата ПК RastrWin в формат ПВК Eurostag. Одной из особенностей между данными программными продуктами является различие представления исходных данных заданная точность расчета. И

3

1. Пользовательский интерфейс

1.1. Начало работы

При запуске программы на экране появляется главное меню с панелью инструментов, рабочая область Схема для отображения схемы электрических соединений и рабочая область Расчет для задания и вывода на экран исходной информации и результатов расчета.

Рисунок 1.1 – Рабочая область программы

1.2. Главное меню

1.2.1. Файл

Рисунок 2.1 – Меню «Файл»

- Новая схема

Используется для создания новой схемы соединения электрических элементов в рабочей области **Схема**, которая автоматически появляется в левой части экрана при вызове программы.

– Открыть

Используется для загрузки файла с графическим представлением схемы соединения электрических элементов в область программы. При вызове данной команды появляется стандартное диалоговое окно открытия файла. В строке выбора типа файла указывается тип загружаемого файла .els.

– Сохранить

Используется для сохранения ранее загруженного файла типа .els.

- Сохранить как

Используется для сохранения файла с графическим представлением схемы соединения электрических элементов из рабочей области программы. При вызове данной команды появляется стандартное диалоговое окно сохранения файла. В строке выбора типа файла указывается тип загружаемого файла .els.

– Закрыть

Используется для закрытия рабочей области Схема.

– Выход

Используется для выхода из программы. Если до вызова команды **Выхо**д пользователь не сохранил файл схемы соединения электрических элементов, то на экране появится стандартное меню с возможностью сохранения и выхода из программы без сохранения.

1.2.2. Загрузка

Загрузка Расчеты График На Загрузить *.ech Редактировать *.ech Загрузить *.dta Редактировать *.dta rg2 -> ech

Рисунок 2.3 – Меню «Загрузка»

Используется для загрузки и редактирования файлов с типами данных ПВК EUROSTAG в область программы. При вызове команды Загрузить *.ech или Загрузить *.dta появляется стандартное диалоговое окно открытия файла. В зависимости от выбранной команды в строке выбора типа файла указывается тип загружаемого файла .ech или .dta.

- Редактировать *.ech

Используется для отображения и редактирования информации в файлах данных режима, используемых в ПВК EUROSTAG (рисунки 2.4, 2.5).

Вкладка Узлы

—	порядковый номер строки;
_	номер района;
	тип элемента (0 – нагрузка, 2 – генератор, 3 – базисно-
_	балансирующий узел);
_	состояние элемента (1 – включен, 2 – отключен);
_	активная мощность, генерируемая в узле, МВт;
_	реактивная мощность, генерируемая в узле, МВар;
_	номинальное напряжение, кВ;
—	расчетное напряжение, кВ;
	угол сдвига вектора напряжения в узле относительно базисно-
_	балансирующего узла, град;
_	минимальная реактивная генерация в узле, МВар;
—	максимальная реактивная генерация в узле, МВар;
	заданное значение угла сдвига вектора напряжения в узле
_	относительно базисно-балансирующего узла, град;
—	заданный модуль напряжения в узле, кВ;
_	активная мощность, потребляемая в узле, МВт;
—	реактивная мощность, потребляемая в узле, МВар.

Вкладка Ветви

—	порядковый номер строки;
—	номер начала ветви;
_	номер конца ветви;
	номер параллельности. Если элемент без параллельных
—	связей, то Номер пар = 1;
_	состояние элемента (1 – включен, 2 – отключен);
	тип элемента (1 – выключатель, 2 – ЛЭП, 41 –
_	трансформатора);
—	активное сопротивление элемента, о.е.;
—	реактивное сопротивление элемента, о.е.;
—	проводимость элемента, о.е.;
_	коэффициент трансформации, о.е.;
_	номинальная мощность, MBA ($S = \sqrt{3} \cdot I_{\text{доп}} \cdot U_{\text{ном}}$).

🔳 у	Узлы и Ветви															
Yar	ы Ветви															
N²	Район	Номер	Тип	Состояние	Рген	Qген	Uном	Upac	Угол	Qmin	Qmax	Угол зд	Uзд	Рнаг	Qнаг	<u>^</u>
1	0	1	3	0	-430,104	322,276	510	1,01588	0	0	0	0	518,1	0	0	
2	0	44	0	0	0	0	120	0,94124	5,42662	0	0	0	0	64,15842	-8,21647	
3	0	2	1	0	291	77,21545	120	0,99833	12,7987	0	212,25	0	119,8	8,303883	17,91891	
4	0	3	0	0	0	0	120	1,01218	4,89962	0	0	0	0	43,70464	7,954246	
5	0	4	0	0	0	0	120	0,97907	10,4772	0	0	0	0	0	0	
6	0	5	1	0	239,2	-33,5244	220	1,02545	12,8923	-77,7562	229,4688	0	225,6	26,48502	33,21553	
7	0	6	0	0	0	-180	510	1,01592	0,01607	0	0	0	0	0	0	
8	0	7	0	0	0	0	220	1,02618	12,5741	0	0	0	0	0	0	
9	0	8	1	0	270,3	116,0599	120	0,99833	12,8122	0	245,1833	0	119,8	101,0451	80,24173	
10	0	9	0	0	249,4	104,6067	120	0,97902	10,4848	0	0	0	0	143,9631	90,99307	
11	0	10	1	0	800	88,03233	24	0,99583	7,44682	0	380	0	23,9	43,96687	38,46009	
12	0	11	0	0	0	0	510	1,01648	0,87726	0	0	0	0	0	0	
13	0	12	0	0	0	0	510	1,01741	0,89474	0	0	0	0	0	0	
14	0	13	0	0	0	0	120	0,9703	9,95721	0	0	0	0	25,96056	11,10098	
10	0	4.4	0	0	0	100	500	0.07040	0.75010	0	0	0	0	0	0	T
															OK	Отмена

Рисунок 2.4 – Таблица «Узлы и ветви». Вкладка «Узлы»

📕 Узл	ны и Ветви							1.			
Узлы	Ветви										
N≗	№_нач	№_кон	Nº_n	Состояние	Тип	R	×	В	Ктр	S ном	<u> </u>
1	1	6	1	1	2	3,8E-5	3,8E-5	0,006502	0	8832,576	
2	6	11	1	1	2	0,000169	0,002049	0,082062	0	1766,692	
3	6	12	1	1	2	0,000169	0,002072	0,082972	0	1766,692	
4	6	469	1	1	2	0,003491	0,037366	1,468525	0	1766,692	
5	6	545	1	1	2	0,001918	0,046136	2,47095	0	1766,692	
6	7	54	1	1	2	0,012231	0,068492	0,051546	0	314,3672	
7	2	13	1	1	2	0,015694	0,053056	0,015264	0	2078,253	
8	2	86	1	1	2	0,039339	0,17157	0,031097	0	1905,065	
9	9	16	1	1	2	0,009861	0,055139	0,015264	0	2078,253	
10	13	16	1	1	2	0,007014	0,017917	0,004968	0	2078,253	
11	14	23	1	1	2	0,000932	0,013836	0,53375	0	1732,051	
12	14	23	2	1	2	0,000932	0,014068	0,526125	0	1732,051	
13	15	86	1	1	2	0,057273	0,250579	0,011253	0	1905,065	
14	15	86	2	1	2	0,057273	0,250579	0,011253	0	1905,065	
10	10	4.4	-	1	2	0.004000	0.100000	0.000700	0	2070 252	-
										ОК	Отмена

Рисунок 2.5 – Таблица «Узлы и ветви». Вкладка «Ветви»

– Редактировать *.dta

Используется для отображения и редактирования информации в файлах данных динамики, используемых в ПВК EUROSTAG (рисунки 2.6, 2.7).

Вкладка Генераторы

N⁰	_	порядковый номер строки;
Название	_	название генератора;
Номер	_	номер узла, к которому подключен генератор;
узла Т		
ТИП	—	тип системы возоуждения;
Кол-во	_	количество обмоток генератора, учитываемых при
обмоток		моделировании переходного процесса;
S	—	номинальная полная мощность генератора, МВА;
Ином	_	номинальное напряжение генератора, кВ;
доля Р	_	доля загрузки генератора по активной мощности, о.е.;
доля Q	_	доля загрузки генератора по реактивной мощности, о.е.;
Кдем	_	коэффициент демпфирования;
Н	_	постоянная инерции, о.е.;
V.I		синхронное индуктивное сопротивление по продольной оси,
Λŭ	_	o.e.;
X'd	_	переходная реактивность по продольной оси, о.е.;
X"d	_	сверхпереходная реактивность по продольной оси, о.е.;
V		синхронное индуктивное сопротивление по поперечной оси,
лц	_	0.e.;
X'q	_	переходная реактивность по поперечной оси, о.е.;
X"q	_	сверхпереходная реактивность по поперечной оси, о.е.;
R статора	_	активное сопротивление статора, о.е.;
Утечка		
статора	_	утечка статора, о.е.;
-		

T'd0	_	переходная постоянная времени по продольной оси, о.е.;
T''d0	—	сверхпереходная постоянная времени по продольной оси, о.е.;
T'q0	—	переходная постоянная времени по поперечной оси, о.е.;
T''q0	—	сверхпереходная постоянная времени по поперечной оси, о.е.;
Р турбины	_	номинальная мощность турбины, МВт;
Р ген	_	номинальная мощность генератора, МВт.

Вкладка Регулятор + турбина

N⁰	—	порядковый номер строки;
Название	-	название генератора;
Номер узла	-	номер узла, к которому подключен генератор;
Макроблок 1		HODDOLLING NORMOGHORO O HONODON HODOLLING DULLY
№ параметров		названия макроолока с номером используемых в них
Макроблок 2		параметров для описания турбины, системы возбуждения
No Honou tormor	—	генератора и автоматического регулятора возбуждения
л⁰ параметров		генератора. Порядок следования макроблоков задается по
Макроблок 3		
№ параметров		данным фаила формата .dta.

 $- rg2 \rightarrow ech$

Используется для конвертирования файлов формата .rg2 в файлы формата .ech. Программа позволяет не создавать вручную файлы данных режима в ПВК EUROSTAG, а воспользоваться файлами данных режима ПК RastrWin.

Узлы и Ветви) X						
Гене	ераторы Р	егулятор + ту	рбина	i]																
N≗	Название	Номер узла	Тип	Кол-во обмоток	S	U ном	доля Р	доля Q	Кдем	н	Xd	N'd	P"X	Xq	X'q	X"q	R статора	Утечка статора	T'd0	<u>^</u>
1	830	830	M2	3	3000	16	1	1	1	5,395	1,22	0,38	0,26	0,78	0	0,27	0	0,175	10,2	0,13
2	829	829	M2	3	1011,765	15	1	1	1	5,395	1,22	0,38	0,26	0,78	0	0,27	0	0,175	10,2	0,13
3	C808	808	M2	3	2500	16	1	1	1	4,9	1,044	0,378	0,244	0,811	0	0,274	0	0,188	9,4	0,13
4	C819	819	M2	3	1411,765	16	1	1	1	4,9	1,044	0,378	0,244	0,811	0	0,274	0	0,188	9,4	0,13
5	C818	818	M2	3	1294,118	16	1	1	1	4,9	1,044	0,378	0,244	0,811	0	0,274	0	0,188	9,4	0,13
6	C102_2	102	M2	3	166,6667	19	0,148	0,148	1	4,81	1,5	0,18	0,122	1,5	0	0,122	0	0,091931	11,9	0,26
7	C102_3	102	M2	3	166,6667	19	0,142	0,142	1	4,81	1,5	0,18	0,122	1,5	0	0,122	0	0,091931	11,9	0,26
8	C102_4	102	M2	3	166,6667	19	0,142	0,142	1	4,81	1,5	0,18	0,122	1,5	0	0,122	0	0,091931	11,9	0,26
9	C102_5	102	M2	3	166,6667	19	0,142	0,142	1	4,81	1,5	0,18	0,122	1,5	0	0,122	0	0,091931	11,9	0,26
10	C102_6	102	M2	3	166,6667	19	0,142	0,142	1	4,81	1,5	0,18	0,122	1,5	0	0,122	0	0,091931	11,9	0,26
11	C102_7	102	M2	3	166,6667	19	0,142	0,142	1	4,81	1,5	0,18	0,122	1,5	0	0,122	0	0,091931	11,9	0,26
12	C102_8	102	M2	3	166,6667	19	0,142	0,142	1	4,81	1,5	0,18	0,122	1,5	0	0,122	0	0,091931	11,9	0,26
13	C171	171	M2	3	280	120	1	1	1	4,83	2,2	0,24	0,143	2,2	0	0,143	0	0,10765	11,7	0,27
14	C880_1	880	M2	3	125	11	0,238	0,238	1	3,945	1,91	0,28	0,192	1,91	0	0,192	0	0,144847	6,45	0,17 👻
																				•
																		OK	<u>Отъ</u>	иена
											_									

Рисунок 2.6 – Таблица «Узлы и ветви». Вкладка «Генераторы»

📕 Узл	ы и Ветви							
Генер	аторы Регу.	лятор + турбина	1					
N≗	Название	Номер узла	Макроблок 1	№ параметров	Макроблок 2	№ параметров	Макроблок 3	№ параметров
1	830	830	ARV5P	3	PCONST	1	TYR	1
2	829	829	ARV5P	3	PCONST	1	TYR	2
3	C808	808	ARV5P	3	PCONST	1	TYR	2
4	C819	819	ARV5P	3	PCONST	1	TYR	2
5	C818	818	ARV5P	3	PCONST	1	TYR	2
6	C102_2	102	ARVP	4	PCONST	1	TYR	5
7	C102_3	102	ARVP	4	PCONST	1	TYR	5
8	C102_4	102	ARVP	4	PCONST	1	TYR	5
9	C102_5	102	ARVP	4	PCONST	1	TYR	5
10	C102_6	102	ARVP	4	PCONST	1	TYR	5
11	C102_7	102	ARVP	4	PCONST	1	TYR	5
12	C102_8	102	ARVP	4	PCONST	1	TYR	5
13	C171	171	PCONST	1	ARVP	4	TYR	5
14	C880_1	880	ARVP	4	PCONST	1	TYR	5
10	C000 0	000		4	DEGNET	-	TVD	c

Рисунок 2.7 – Таблица «Узлы и ветви». Вкладка «Регулятор + турбина»

1.2.3. Расчеты

Рисунок 2.8 – Меню «Расчеты»

Используется для выполнения подготовительных действий к расчету.

– Преобразовать схему

Используется для подготовки схемы электрических соединений из рабочей области **Схема** к дальнейшему расчету. При вызове данной команды формируется табличное представление элементов схемы с их параметрами – **Параметры расчета** (рисунок 2.9).

Также, при вызове команды **Преобразовать схему,** формируются группы для расчета УРОВ, т.е. элементы, соединенные в один электрический узел, формируют одну группу и т.д.

п 🖷	араме	тры ра	счета									• X
N≗	S	0	тип	№ начала	N≗конца	11	tв	tos	tA∏B	typoв	1-φ K3	2-ф К.З
1	вкл	ОБ	Тр-р	0	0	0	0	0	0	0	0	0
2	вкл	ОБ	Ген	829	0	0	0	0	0	0	0	0
3	вкл	05	лэп	820	801	1	0	0	0	0	0	0
4	вкл	0Б	лэп	805	820	1	0	0	0	0	0	0
5	вкл	06	Тр-р	0	0	0	0	0	0	0	0	0
6	вкл	ОБ	Ген	830	0	0	0	0	0	0	0	0
7												
										OK		Отмена

Рисунок 2.9 – Таблица «Параметры расчета»

Таблица Параметры расчета содержит следующие поля:

S	_	состояние элемента (включен/отключен);
0	_	тип привода выключателя на присоединении (ОБ – общий привод на все три фазы, ПФ – пофазный привод);
Тип	_	тип элемента электрической сети;
№ начала	_	номер узла начала ветви (если тип элемента – генератор, то номер его узла записывается в поле № начала);
№ конца	_	номер узла конца ветви;
	_	номер параллельности;
tB	_	время отключения выключателя (сек);
toз, сек	_	время срабатывания основных защит на присоединении (сек);
tAПВ, сек	_	пауза АПВ (сек);

- tуров, сек время выдержки УРОВ (сек);
- 1-ф КЗ шунт однофазного КЗ (о.е.);
- 2-ф КЗ шунт двухфазного КЗ на землю (о.е.).
- Рассматриваемые возмущения

Используется для задания нормативных возмущений [1] при расчете динамической устойчивости (рисунок 2.10).

🔳 Возмущения	
НАПВ	
🔲 1-фазный	
🔲 2-фазный	
🔲 3-фазный	
- YPOB	
🔲 1-фазный	
🔲 2-фазный	
🗖 З-фазный	
Отключение	_
🦵 Генератора	OK
🗖 Нагрузки	Отмена

Рисунок 2.10 – Тип возмущения

В программе существует возможность рассмотрения следующих нормативных возмущений, выбранных как наиболее тяжелые с точки зрения сохранения динамической устойчивости:

- Отключение сетевого элемента основными защитами с неуспешным АПВ при:
 - однофазном КЗ на землю;
 - двухфазном КЗ на землю;
 - трехфазном КЗ.

- Отключение сетевого элемента действием УРОВ с отказом одного выключателя при:
 - однофазном КЗ на землю;
 - двухфазном КЗ на землю;
 - трехфазном КЗ.
- Отключение генератора или блока генераторов с общим выключателем;
- Отключение крупного потребителя.
- Сформировать *.seq

Используется для автоматического формирования файлов событий в формате, используемом ПВК EUROSTAG, с учетом схемы электрических соединений, изображенной в рабочей области **Схема** и заданных параметров элементов.

– Загрузить *.seq

Используется для загрузки файлов событий в формате, используемом ПВК EUROSTAG. При вызове данной команды появляется стандартное диалоговое окно открытия файла. В строке выбора типа файла указывается тип загружаемого файла .seq.

– Запуск расчета

Используется для запуска расчета динамической устойчивости с учетом сформированных ранее файлов событий формата .seq. Информация о результатах расчета выводится в табличной форме в рабочую область **Расчет**.

1.2.4. График

Рисунок 2.11 – Меню «График»

Используется для вывода на экран графика изменения заданных величин во времени при расчете апериодического процесса.

– Опции графика

Используется для выбора необходимых величин, изменение значения которых требуется отобразить графически (рисунок 2.12).

В программе существует возможность графического отображения во времени следующих величин:

- Угол ротора генератора;
- Электрический момент генератора;
- Внутренний угол генератора;
- Напряжение на шинах РУ;
- Частота на шинах РУ;
- Угол напряжения на шинах РУ;
- Активная мощность, текущая по заданной ветви;
- Реактивная мощность, текущая по заданной ветви;
- Ток, текущий по заданной ветви.

📕 Настройка вывода графиков	
Генераторы	
🔲 Угол ротора	
П Эл момент	
Внутренний угол	
-Узлы	
🔲 Напряжение	
П Частота	
9гол	
Ветви	
🗌 Активная мощность	
Реактивная мошность	ОК
	Отмена

Рисунок 2.12 – Настройка вывода графиков

Для вызова графика (рисунок 2.13) на экран используется команда График.

Рисунок 2.13 – График изменения ротора генератора

1.2.5. Настройка

Рисунок 2.14 - Меню «Настройка»

– Настройка расчета

Используется для настройки параметров файла событий формата .seq (рисунок 2.15).

– Запуск формы расчета

Используется для вывода на экран рабочей области Расчет.

📕 Настройки		
Тип вывода:	Полный вывод пара	метров машин в табл 💌
🔲 Вывод результатов расчета		
🔲 Вывод переменных после инициа	лизации	
🔲 Автоматическое преобразование		
Общая относительная точность:		0,0001
Общая абсолютная точность:		0,0001
Точность для востановления алгебра	аических уравнений:	0,001
Минимальный шаг интегрирования:		1E-10
Максимальный шаг интегрирования:		1
Начальное время:		0
	OK	Отмена

Рисунок 2.15 – Настройки параметров расчета

Изменяемые поля окна **Настройки** дублируют **Параметры сценария** в ПВК EUROSTAG [2].

1.3. Работа с модулем «Схема»

Схема используется для графического представления соединения элементов электрической сети. По схеме программа формирует алгоритм расчета.

Элементы схемы представляют собой графическое представление основных электросетевых и электрогенерирующих элементов.

Рисунок 3.1 – Панель инструментов

– Трансформатор

– Автотрансформатор

Рисунок 3.3 – Автотрансформатор

– Токоограничивающий реактор

Рисунок 3.4 – Токоограничивающий реактор

- Линия электропередачи
 - Вертикальное представление

• Горизонтальное представление

Рисунок 3.6 – Линия электропередачи

- Система

Рисунок 3.7 – Система

– Генератор

Рисунок 3.8 – Генератор

– Нагрузка

Рисунок 3.9 – Нагрузка

- Выключатель

• Вертикальное представление

Рисунок 3.10 – Выключатель

• Горизонтальное представление

Рисунок 3.11 – Выключатель

– Узел электрических соединений. Используется для соединения трех и более графических элементов между собой.

Рисунок 3.12 – Узел электрических соединений

– Шина распределительного устройства

Рисунок 3.13 – Шина распределительного устройства

Для соединения графических элементов между собой необходимо навести курсор на элемент, затем соединить значащие области элементов.

1.4. Контекстное меню модуля «Схема»

Рисунок 4.1 – Контекстное меню

Контекстное меню в схеме используется для выполнения основных функций при работе с объектом схемы, а также для связи графического представления объекта с его табличным представлением.

Для вызова локального меню работы с объектом схемы необходимо, чтобы курсор был наведен на соответствующий объект.

1.4.1. Параметры элемента

При вызове команды **Параметры** элемента появляется окно с параметрами элемента, в поля которого пользователь задает исходные данные, необходимые для расчета.

Физическая модель программы позволяет соединять линии электропередачи, трансформаторы, автотрансформаторы, генераторы, реакторы, нагрузки к шинам РУ и между собой без использования выключателей, но с учетом их параметров.

Окно **Параметры** элемента, соответствующее следующим электросетевым элементам (рисунок 4.2):

- Трансформатор/автотрансформатор;
- Линия электропередачи;
- Выключатель;
- Токоограничивающий реактор;

содержит:

Параметры	ы Элемента		
№н	1	🔲 Пофазный привод	OK
N²ĸ	2		Отмена
nll	1		
Uном, кВ	110		
tв, сек	0,04		
toз, сек	0,1		
tans, сек	2		
tуров, сек	0,3		

Рисунок 4.2 – Параметры элемента

№н – номер узла начала ветви;

№к – номер узла конца ветви;

n || – номер параллельности. При отсутствии параллельных ветвей номер параллельности должен быть равен 1;

номинальное напряжение элемента (задается в киловольтах).

Uном, кВ – Для трансформатора и автотрансформатора задается номинальное напряжение начала ветви Uном_н и номинальное напряжение конца ветви Uном к;

время отключения выключателя (задается в секундах). Если в схеме отсутствует выключатель, то задается время отключения элемента равное времени отключения выключателя, установленного на данном присоединении;

- toз, сек время срабатывания основных защит на присоединении (задается в секундах);
- taпв, сек пауза АПВ (задается в секундах);
- typoв, сек время выдержки УРОВ (задается в секундах).

Если на выключателе на присоединении установлен пофазный привод, то необходимо поставить галочку в соответствующей строке.

Окно Параметры элемента, изображенное на рисунке 4.3, соответствует следующим электросетевым элементам:

– Генератор;

– Система.

Параметры Элемента					
№узла 0,0000000 Пофазный привод	ОК				
Uном, кВ 0,0000000	Отмена				
tв, сек 0,0000000					

Рисунок 4.3 – Параметры элемента

Окно Параметры элемента, изображенное на рисунке 4.4, соответствует следующим электросетевым элементам:

– Шина РУ.

Параметры Элемента		
Uном, кВ 0,0000000	🔲 Пофазный привод	ОК
tos, сек 0,0000000		
typoв, сек 0,0000000		UIMEHa

Рисунок 4.4 – Параметры элемента

1.4.2. Разорвать связи

Команда **Разорвать связи** используется для удаления электрической соединения между элементами схемы.

1.4.3. Удалить

Команда Удалить используется для удаления элемента из рабочей области Схема.

Расчет	-			223				• X
N≗	*.ech		×.dta			сущ		Удалить
1	test.ech		test.c	dta		сошёлся		
2								
Параметр	ы	агрузка	seq	Создат	ь se	eq B	озмущения	
Nº	×.ech	×.dta		*.seq	Pe	зультат	Время	
1	test.ech	test.dta		9POB(1)-24.seq	не	устойчиво	101.2648	
2	test.ech	test.dta		YPOB(1)-34.seq	ус	тойчиво		
3								
Расчет	-			График		0	пции график	
160.0000 s	 - АВТОМАТИКА	А17 ОПР	₽ЕДЕ	ЛИЛА УСТОЙЧИ	BOI	 Е СОСТОЯНИ	1E	
CASE УРОВ(1)-34 лг	NAME ? (.RE: .seq ЭСТИГНЫТО КО	S FILE FF	30М 8	EUROSTAG_S) 1 PACHETA BPFM	я			
д.	ссчитано: 2		. для		1			

1.5. Работа с модулем «Расчет»

Рисунок 5.1 – Область программы «Расчет»

Область программы **Расчет** используется для ввода и вывода информации при работе с программой, а именно:

- загрузки исходных файлов .ech и .dta, необходимых для расчета;
- загрузки готовых файлов .seq;
- создания файлов .seq;
- отображения информации о результатах расчета статической устойчивости загруженных режимов;

- отображения информации о результатах расчета динамической устойчивости загруженных режимов;
- отображения графиков апериодического процесса.

Перед проведением расчетов в программе необходимо загрузить файлы формата .ech и .dta с исследуемой математической моделью электрических соединений. В зависимости от объема расчетов в программу могут быть загружены несколько пар файлов формата .ech и .dta, которые будут располагаться в таблице с номером строки согласно последовательности добавления (рисунок 5.2).

N²	*.ech	*.dta	сущ
1	test.ech	test.dta	сошёлся
2			
			,

Рисунок 5.2 – Таблица загрузки файлов форматов .ech, .dta

Информация о созданных файлах формата .seq располагается в табличной форме. Последовательность строк формируется согласно таблице **Параметры** расчета (рисунок 5.3).

Nº	*.ech	*.dta	*.seq	Результат	Время	-
1	test.ech	test.dta	OF-2.seq	устойчиво		-
2	test.ech	test.dta	НАПВ(3)-33.seq	неустойчиво	101.1765	
3	test.ech	test.dta	9P0B(3)-36.seq	неустойчиво	101.1820	
4	test.ech	test.dta	НАПВ(3)-43.seq	неустойчиво	101.6556	Ŧ
•					+	

Рисунок 5.3 – Результаты расчета

В столбце *.ech отображается имя файла данных режима.

В столбце *.dta отображается имя файла данных динамики.

В столбце ***.seq** отображается имя файла событий. Оно формируется автоматически при вызове команды **Сформировать *.seq.** В начале имени

записывается нормативное возмущение. В скобках – вид КЗ, далее – номер строки из таблицы **Параметры расчета.**

В столбце **результат** отображается результат расчета динамической устойчивости – устойчиво/неустойчиво.

В столбце **время** отображается время потери динамической устойчивости хотя бы одним генератором системы. Время рассчитывается с начала переходного процесса. Критерием определения динамической устойчивости является угол ротора и скорость вращения ротора генераторов. При устойчивом состоянии генераторов время не указывается.

2. Расчет

Перед проведением расчетов в программе необходимо подготовить исходные данные по файлам данных режима. Это могут быть файлы формата .ech, используемые в ПВК EUROSTAG версии 4.5, или файлы формата .rg2, используемые в ПК RastrWin. Для конвертирования файлов данных режима формата .rg2 в файлы формата .ech необходимо вызвать команду Загрузка – $rg2 \rightarrow ech$.Также необходимо подготовить исходные данные по файлам данных динамики формата .dta, используемые в ПВК EUROSTAG версии 4.5.

2.1. Порядок расчета

1. Загрузить файл со схемой электрических соединений формата .els с помощью команды **Файл – Открыть**. Или создать файл в рабочей области **Схема** с помощью команды **Файл – Новая схема**.

2. Задать параметры элементов схемы электрических соединений с помощью контекстного меню в рабочей области Схема. Если заданы не все параметры элементов, то программа при расчете автоматически задаст стандартные значения:

tB, CEK=0,08to3, CEK=0,04tanb, CEK=2typob, CEK=0,3

3. Загрузить файлы данных режима и файлы данных динамики форматов .ech и .dta через рабочую область **Расчет**. Для правильной работы программы необходимо проконтролировать, чтобы номера ветвей и названия генераторов в схеме и в файлах формата .ech и .dta совпадали.

4. Сформировать таблицу Параметры расчета с помощью команды Расчеты – Преобразовать схему. В таблице необходимо задать значения шунтов при однофазном КЗ и двухфазном КЗ на землю. Для дальнейшего изменения параметров элементов схемы возможно использование таблицы

32

Параметры расчета, вызов на экран которой осуществляется через рабочую область **Расчет** с помощью команды **Параметры**. Если не все значения заданы, то программа при расчете автоматически задаст стандартные значения:

Хш однофазного КЗ, о.е.	=	0,09
Хш двухфазного КЗ на землю, о.е.	=	0,002
Хш трехфазного КЗ, о.е.	=	0

5. Сформировать файл событий формата .seq с помощью команды Расчеты – Сформировать *.seq либо через рабочую область Расчет командой Создать seq. Для этого сначала необходимо задать интересующие нормативные возмущения с помощью команды Расчеты – Рассматриваемые возмущения либо через рабочую область Расчет командой Возмущения. Для загрузки файла событий .seq необходимо воспользоваться командой Расчеты – Загрузить *.seq либо командой Загрузка seq через рабочую область Расчет.

6. Произвести расчет с помощью команды Расчеты – Запуск расчета либо через рабочую область Расчет с помощью команды Расчет.

7. Вывести на экран графики изменения расчетных величин с помощью команды График либо через рабочую область Расчет командой График. Для этого сначала необходимо задать интересующие переменные командой График – Опции графика либо через рабочую область Расчет командой Опции график. Затем выделить курсором ту ячейку в рабочей области Расчет, файл событий в которой необходимо рассмотреть.

33